INTRODUCING THE CALSOOEXP DATASET: TOWARDS TIME-VARYING
MUSIC AUTO-TAGGING

Ju-Chiang Wang!2, Shuo-Yang Wang', Yi-Hsuan Yang', and Hsin-Min Wang!
! Academia Sinica, Taipei, Taiwan
2 University of California, San Diego, La Jolla, CA, USA

asriver.wang@gmail.com, {raywang, yang, whm}@iis.sinica.edu.tw

1. INTRODUCTION

With tremendous growth of digital music libraries online,
a large number of text-based music information retrieval
(MIR) methods have been proposed in the literature [1, 2,
4,6,8,11,13,17-19,22]. These methods hold the promise
of helping users search for music in a content-based way
through a few keywords related to high-level music seman-
tics or metadata such as artist name, song title, genre, style,
mood, and instrument [5]. The task of automatically anno-
tating musical items (e.g., artists, albums, or tracks) with
high-level musical semantics is usually referred to as mu-
sic auto-tagging.

In many previous works, music auto-tagging has been
devoted to labeling music in the frack-level, assuming that
the overall content of a track can be summarized by a set of
tags [1,6,17]. That is, they usually collect the ground-truth
associations between tag and music in the track level [15],
develop a set of track-level auto-taggers, and then evaluate
the accuracy by comparing the predicted labels against the
ground-truth ones. This approach is straightforward since
it is natural for people to talk about music in the track-
level. However, it might not be adequate for tracking the
tags that vary with time as different fragments of a track
might be semantically non-homogenous. For example, it
is well-known that the music emotion aspect is better mod-
eled as time-varying [12]. For local musical events such as
instrument solo, it is also preferable to consider the corre-
sponding audio content in a finer granularity (i.e., smaller
temporal scale) [19].

The prevalence of the track-level approach might be
partly due to the difficulty of collecting tag labels at smaller
temporal scales. It requires people to listen to a track and
make the moment-by-moment annotations consecutively.
An annotator would have to listen to the same track sev-
eral times to ensure that the annotation is accurate and
complete, which is enormously labor-intensive and time
consuming. Therefore, existing datasets for auto-tagging
usually employ track-level tags [14, 16], without specify-
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ing the exact temporal positions in a track with which a
given tag is associated.

Mandel et al. presented an early attempt to address
this issue [9, 10]. For each track, they sampled five fixed-
length (10-second) segments evenly spaced throughout the
track. Then, an online crowdsourcing platform, Amazon
Mechanical Turk, ! was adopted to collect the tags for each
segment. It is found that different parts of the same track
tend to be described differently by the human listeners.
However, obtaining a short music segment for annotation
without concerning its possible acoustic homogeneity and
the corresponding duration variability may result in de-
grading the tag label quality, as the annotators might not
easily catch the local musical event. By describing tags in a
shorter and variable temporal scale that is acoustically ho-
mogeneous, the connection between natural language (i.e.,
tags) and music would be better defined, leading to new
opportunities to bridge the so-called semantic gap.

To this end, the goal of time-varying music auto-tagging
is to train the auto-taggers based on length-variable ho-
mogeneous segment tag labels so as to make more accu-
rate tag predictions for contiguous, overlapping short-time
segments (with variable length) of a track. The concept
of time-varying music auto-tagging lends itself to applica-
tions such as audio summarization, playing-with-tagging
(PWT) [19] (i.e., visualizing music signals by tracking the
tag distribution during playback), automatic music video
generation [7,20] (i.e., matching between the music and
video signals in a more fine-grained temporal scale), and
audio remixing [3] (i.e., jumping from a fragment of a track
to a fragment of another track).

In light of above discussion, we present a novel dataset
to foster time-varying music auto-tagging. The dataset,
which is called CAL500 Expansion (CAL500exp), is an en-
riched version of the well-known CALS500 dataset [17]. 2
To provide more accurate and consistent labels of music
content in a finer granularity, a novel protocol with three
new elements tailored for constructing a time-varying mu-
sic auto-tagging dataset is proposed.

e Instead of using segments of fixed duration, we per-
form audio-based segmentation to extract acousti-
cally homogenous segments with variable length and
inter-segment clustering to select the representative
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segments for annotation.

e Instead of annotating each segment from scratch, we
initialize the annotation of each segment based on
the track-level labels of CAL500 and ask subjects to
check and refine the labels to save annotation bur-
den.

e Instead of using crowdsourcing, we recruit subjects
with strong music background and devise a new user-
interface for better annotation quality.

Furthermore, we have also presented a comparative study
that validates the performance gain brought about by the
CALS500exp dataset over its predecessor CAL500 for time-
varying music auto-tagging. For more details, we refer
readers to [21].

To call for more attention to time-varying auto-tagging,
we have made CAL500exp available upon request to the
research community.® We believe that CAL500exp may
open new opportunities to understand and to model the
temporal context of musical semantics.
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